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Curvature of quantum wire results in the intrasubband absorption of IR radiation that induces stationary
photovoltage in the presence of circular polarization. This effect is studied in ballistic �collisionless� and kinetic
regimes. The consideration is concentrated on quantum wires with a curved central part. It is shown that, if
mean-free path is shorter than length of the curved part, the photovoltage does not depend on the wire shape,
but on the total angle of rotation of the tangent to the wire. It is not the case when the mean-free path is finite
or large. This situation was studied for three specific shapes of wires: “hard angle,” “open book,” and “�-like.”
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I. INTRODUCTION

The stationary current induced by alternating force was a
subject of numerous publications. The ordered motion of
electrons in the absence of stationary driving force implies
the simultaneous existence of energy and momentum
sources. While the energy originates from the alternating
force, the momentum can be transferred from the wave itself,
as well as �constructively� from scattering events, when vec-
tor asymmetry dictates the direction of the current.

The directions of study can be classified in relation to the
participation of light momentum, the source of anisotropy,
the system uniformity, coherence of light, etc. In particular,
the term “photogalvanic effect”1–3 is used to describe the
stationary photocurrent in a homogeneous medium with low
symmetry, where the direction of current is determined by
the electric field of light together with the third-rank tensor
belonging to the medium itself, while the directional motion
is caused by the participation of electron scattering. The term
“photon drag”4–6 relates to currents due to the transmission
of momentum from photons to electrons and does not need
any participation of the “third body,” namely, scatterers. The
term “quantum pumps”7–10 is applied mainly to the local
quantum systems driven by periodically changing param-
eters. The term “ratchet”11–13 is used to describe the station-
ary flow caused by an alternating force, not necessarily elec-
trical.

The purpose of the present paper is IR photoresponses in
curved quantum wires. The main idea is that, in spite of
uniformity of IR electric field, the acting component of elec-
tric field tangential to the narrow wire becomes nonuniform
with the characteristic length dictated by the wire curvature.
This idea reminds of the situation with the nonuniformity of
acting component of the magnetic field in the curved two-
dimensional �2D� systems �see, e.g., Ref. 14�. We studied the
photocurrent in a spiral quantum wire earlier.15 The system
under examination differs from Ref. 15 in the nonhomoge-
neous curvature. An example of the nonuniformly curved
system, namely, curved one-dimensional �1D� quantum dot
lattice subjected to IR radiation was studied in Ref. 16.

We consider planar quantum wires with kinks subjected to
normally incident arbitrarily polarized electromagnetic wave.
A sketch of the considered system and examples of curved

wires are shown in Figs. 1 and 2. The wire is assumed to be
strictly one dimensional when only the tangential component
of the electric field �inhomogeneous due to curvature� affects
electrons in a classical manner. This produces a stationary
current in closed circuit �shown in Fig. 1� or a voltage in
open-circuit regimes. The problem is studied in the frame-
work of the classical Boltzmann kinetic equation for freely
moving electrons along the curved quantum wire �the case of
a single subband occupied with intrasubband absorption�. We
assume that the lowest subband bottom of the wire is flat. It
means we ignore the inhomogeneities caused by the bottom
potential, wire width, or curvature.

In the lowest order on intensity the stationary current is
the second-order response to electric field E�t�. In particular,
for coherent monochromatic radiation E�t�=Re�E�e−i�t�,
E�=E��1, i�� /�2 is the complex amplitude of wave; the de-
gree of circular polarization �=0 for linear polarized and �
= �1 for fully circularly polarized wave. Generally speak-
ing, the global current can be connected with the electric
field amplitude in the lower order by a tensor relation Ji

=Re��ijkEj
�Ek

−��, where �ijk is some tensor determined by the
shape of the curve.17 The plane curved wires considered
here, symmetric with respect to x↔−x, can be globally char-
acterized by a unit vector b �Oy. �See Fig. 1 where up and
down directions are not equivalent.� In that case the tensor
�ijk �and the direction of the stationary current J� can be
constructed by means of vector b as follows:

J

source drain

E(t)

J

y

x

quantum wire

b

FIG. 1. Sketch of the considered system. Quantum wire curved
in its central part connects source and drain. The external alternat-
ing electric field E�t� is circularly polarized in the wire plane �x ,y�.
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�ijk = i�a��ijbk − �ikbj� + �s���ijbk + �ikbj�/2 − bibjbk�

and J= i�a�b�E�E−���+Re��s�E�−b�E�b���bE−���, where
�a and �s are real parameters. As will be seen below, only
the term with �a in the current survives in the considered
approximation. Since �E�E−��= i��E��2, the current should
change sign with the sign of circular polarization and should
vanish for linear polarization. So this effect can be attributed
to the class of circular photogalvanic effects.

Generally, the value of current is determined by the wire
shape and its symmetry. Unlike photogalvanic effects �ap-
pearing in homogeneous media� the considered effect has
local nature, which makes it related to quantum pumps. The
current is caused by the momentum transfer from the wire to
electrons via inhomogeneity of acting alternating force.
From this point of view the considered phenomenon is some
sort of the photon drag effect.

Both homogeneity of the system and smallness of electro-
magnetic field wave vector, especially in the case of far IR
light, restrict the known photocurrents. Smallness of the
wave vector leads to relatively weak photon drag effect; the
photogalvanic effect caused by participation of the scattering
by a third body �impurities and phonons� is also weak.
Curved 1D or 2D system present a possibility to overcome
this weakness: the uniform external field affects propagating
electrons by the nonuniform effective force whose character-
istic length, in principle, is comparable with the Fermi wave-
length.

II. BASIC EQUATIONS

Let us consider the one-dimensional quantum wire of
length L described by a planar curve a�s�= �ax ,ay�, where s is
the arc distance along the curve, −L /2�s�L /2. The effec-

tive electric field E affecting electrons is determined by the
projection of electric field E�s , t� to unit tangent vector t�s�
=a��s�: E�s , t�=E�t�t�s�. We will consider the effect in the
approximation of the classical kinetic equation

� f

�t
+ v

� f

�s
− eE � f

�p
= −

f − �f�
	

, �1�

where 	=1 /
 is the relaxation time and �f�= �f�p�
− f�−p�� /2. We neglect the static potential in the wire, in
particular, connected with the curvature itself. Further we
consider the effect of the monochromatic electric field E�t�
=Re�E�e−i�t�.

We will deal with the specific cases of symmetric planar
curves depicted in Fig. 2. The corresponding unit tangent
vectors are

tx�s� = cos � ,

ty�s� = − sign�s�sin � �‘‘angle’’� , �2�

tx�s� = ���− �s + R��� + ��s − R���cos �

+ ��R� − s���R� + s�cos	 s

R

 ,

ty�s� = − sign�s����− �s + R��� + ��s − R���sin �

− ��R� − s���R� + s�sin 	 s

R

 �open book� ,

�3�

tx�s� = �	− s −
�

2
R
 + �	s −

�

2
R


+ �	�

2
R − s
�	�

2
R + s
cos	 s

R

 ,

ty�s� = �	�

2
R − s
�	�

2
R + s
sin	 s

R

 �‘‘� curve’’� .

�4�

The coordinate s is counted from the center of the curves.
Despite simple problem formulation, the target setting has

pitfalls. In fact, the absence of effective driving force apart
from the curved part of the wire results in vanishing of sta-
tionary current in this section of a wire and, consequently,
due to continuity equation, the current in any part of the
wire. One can make certain of that fact directly from Eq. �1�
by integration with respect to the momentum.

We shall consider separately two cases: ballistic and ki-
netic ones. By a ballistic wire we mean a wire shorter than
the mean-free path, ends of which join the electron seas. In
that case one can neglect the scattering inside the wire and
consider entering electrons as equilibrium.

On the contrary, if mean-free path is small as compared
with the wire length, the equilibrium is achieved inside the
wire while equilibrium states can differ in the right and the
left sides of the wire. This case needs to be solved by means
of the kinetic equation accounting for the collisions.

Π�2Α

R

a

b

c
FIG. 2. Considered quantum wires: �a� angle, �b� open book

�straight lines tangential to a circular segment�, and �c� � curve
�semicircle with straight source and drain�. In cases �a� and �b� the
angle between straight parts of wire equals �−2� and the radius of
circular segments in cases �b� and �c� equals R.
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III. BALLISTIC WIRE

In the ballistic limit we start from Eq. �1� with omitted
right-hand side. Solving the kinetic equation in the second
order of electromagnetic field we find the correction to the
isotropic part of the distribution function. From the kinetic
equation it follows that the isotropic part of the distribution
function should have different values on the ends of the wire
s= �L /2. The difference of two limits �dp f�p�s=L/2
−dp f�p�s=−L/2� /� can be attributed to the difference of con-
centrations on the contacts n, in other words, to the differ-
ence of their chemical potentials �=n / ��n /���. Taking
into account the electroneutrality reasons we should keep the
concentration on the wire ends that can be done by adding a
static voltage such as eV=�.

The solution of linearized collisionless kinetic equation
satisfying the condition of equilibrium on the wire ends reads
as

f1
� = exp	 i�s

v

�

�L/2

s

ds� exp	− i�s�

v

eE��s��f0�, �5�

where f0 is the Fermi function, prime means the derivation
over energy �= p2 /2m, and L is the normalization length.
The upper �lower� sign in the limit of the integral corre-
sponds to v� ���0.

For n we have

n =
1

�
�

−�

�

dp f̄2 =
e

2�m
Re�

−�

� dp

v2�
−�

�

ds E−��s�f1
��s� ,

�6�

where f̄2 is the stationary part of the quadratic in E distribu-
tion function. Inserting expression �5� into Eq. �6� one can
obtain

n = −
e2

2�m
�

0

� dp

v2 f0��
−L/2

L/2 �
−L/2

L/2

dsds�

�sin	 i��s − s��
v


Im�E−��s�E��s��� . �7�

Taking into account the symmetry of curves under consider-
ation we obtain for voltage V from Eq. �7�

V = V0�
�2

���n/����0

� dp

v2 f0��
−L/2

L/2 �
−L/2

L/2

dsds�

�sin	 i��s − s��
v


tx�s�ty�s�� . �8�

Here

V0 =
e

2m�2 �E��2.

Introducing the space Fourier transforms

t̃x,y�q� = �
−L/2

L/2

ds tx,y�s�e−iqs,

we arrive at

V = V0�
�2

���n/����0

� dp

v2 f0� Im� t̃x	�

v

 t̃y	�

v

� . �9�

For degenerate Fermi gas for which �n /��=2 /�vF it fol-
lows from Eq. �9� that

V = − V0�
�2

2vF
2 Im� t̃x	 �

vF

 t̃y	 �

vF

� . �10�

We shall exemplify the general result �9� by means of the
case of hard angle �Fig. 2�a��, where voltage takes the form

V = V0�
1

���n/���
sin�2���

0

�

dp f0��2 sin��/2� − sin �� ,

�11�

where �=�L /v. In a particular case of degenerate Fermi
system Eq. �11� leads to

V = − V0�
1

2
sin�2���2 sin��F/2� − sin �F�, ��F = ��v=vF

� .

�12�

Result �12� stays limited when L→�, this implies that the
voltage is formed by a finite curved part of the wire. Never-
theless, the remaining parts s�L of the wire also participate
in the voltage. The evidence of that is the presence of time-
of-flight oscillations at frequencies �N=4N�vF /L �N is inte-
ger� in Eq. �12� �which evidently survive for any considered
shape of wires containing straight parts�. The value of volt-
age, averaged with respect to oscillations, vanishes in the
limit of large L. Just this value survives if the damping will
be taken into account. The limited nature of result for hard
angle leads to the finite contribution of the curved part.

IV. KINETIC APPROACH

Here we solve the kinetic equation �1� with collision term
for infinitely long quantum wire, in assumption that equilib-
rium distribution is established inside the wire. The linear in
E correction f1�t�=Re�f1

�e−i�t� to the equilibrium distribution
function obeys to the equation

�− i� + iqv� f̃1
� − eẼ��q�vf0� = − 
� f̃1

� − � f̃1
��� . �13�

The solution of Eq. �13� reads

f̃1
� = − ieẼ��q�vf0�

� + qv
q2v2 − �2 − i�


. �14�

For calculation of photocurrent we need stationary quadratic
in E part of distribution function. It satisfies the equation

�
 + iqv� f̃̄2�p;q� −
e

4�
q�

�Ẽ−��q − q��
� f̃1

��p;q��
�p

+ �� → − ��� = 
� f̃̄2�p;q�� . �15�

In an infinitely long wire the current tends to zero. This
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follows from infinite resistance of the system and finiteness
of the size where the external field drags electrons. Hence the
static drag current is compensated by the static Ohmic leak-
age current caused by appearing static electric field E0,

j̃�q� + �̃�q�Ẽ0�q� = 0,

where �̃�q� is the linear conductivity. The photovoltage is

V � lim
q→0

Ẽ0�q� = −

lim
q→0

j̃�q�

�̃�0�
. �16�

Thus, the determination of photovoltage requires finding the
limit of space Fourier component of photocurrent j̃�q� at q
→0. Using Eqs. �14� and �15� we obtain from Eq. �16�

V = −
e3

�2��2�̃�0�
�

−�

�

dpf0�v
2��	v�

�p

��
−�

�

dqq�Ẽ��q��2
�


��qv�2 − �2�2 + ��
�2 , �17�

where

�̃�0� = −
e2

�
�

−�

�

dp f0�v
2	 .

With taking into account integration over q the value �Ẽ��q��2

in Eq. �17� can be replaced with 2 Im�Ex
�Ey

−��Im�t̃x�q�t̃y
��q��.

At 
→0 Eq. �17� is simplified to

V = −
e3

4��̃�0�
�

−�

�

dpf0�v
2��	v�

�p

��
−�

�

dqq�Ẽ��q��2���qv�2 − �2� . �18�

The physical meaning of Eq. �18� is very simple: in the pres-
ence of external alternating field the curvature induces pack-

age of waves �Ẽ��q��2 any of which accelerates electrons
moving with the velocity of wave v=� /q.

In the specific case of degenerate Fermi statistics Eq. �18�
reads

V = − V0��
�2

2vF
2 Im� t̃x	 �

vF

 t̃y	 �

vF

� , �19�

where �=1+2� �ln 	� /��ln �F�. If the relaxation time does
not depend on the electron energy Eq. �19� reduces to the
collisionless limit �10�. Although both considerations give
voltage independent from the scattering strength, a more ac-
curate approach �19� depends on the character of scattering
�via energy dependence of 	�, despite the smallness of the
scattering rate. In the case of weak scattering the mean-free
path exceeds the length of curved domain and, thus, one
should think that the scattering does not affect the voltage.
The discrepancy can be explained by the fact that the voltage
is formed on the same distance as the conductivity, namely,
mean-free path v	 or, in other words, on the distance where
the scattering occurs.

Let us consider another limit when the mean-free path is
less than the length of the curved part. Neglecting q in the
denominator of the ratio in Eq. �18� one can get the expres-
sion

V = −
e3

2��̃�0�
�

−�

�

dpf0�v
2 	

���2	2 + 1�
��	v�

�p
�

−�

�

dsk�s� ,

�20�

where k�s�= �ty��s�tx�s�− ty�s�tx��s�� is the curvature. The inte-
gral dsk�s� equals to the total angle of rotation of vector t.
This result physically follows from the locality of static field
production in case of the small mean-free path: that means
that the static field E�s� in the local case can be determined
by nothing else but local curvature k. The universality of Eq.
�20� gives immediately the same result for the cases of hard
angle and open book and zero result for � curve �here we
emphasize that all hard angles on curves are supposed to be
smoother than l�.

V. SPECIFIC SHAPES

When the mean-free path is comparable with the length of
the curved part the induced voltage can be obtained from Eq.
�17� by the substitution of specific expressions for t̃x,y�q�,
while Eqs. �18� and �19� refer to the limit of a large mean-
free path.

For the hard angle t̃�q� has its singular behavior at q=0:
t̃x�q�=2���q�cos � and t̃y�q�= �2i /q�sin �. This singularity
originates from behavior t�s� at s→ ��. Substituting t̃�q� to
Eq. �17� we find

V = − V0�� sin�2��
�	

1 + ��	�2 . �21�

In case of the open book �Fig. 2�b�� at 
→0 and zero
temperature Eq. �18� yields

V = − V0��F��� , �22�

where

F��� =
2� − 2� cos�2��cos�2��� − �1 + �2�sin�2��sin�2���

2�1 − �2�2 ,

�23�

�−2� is the angle at the vertex �see Fig. 2�b��, �=R� /vF,
and R is the radius of the circular part. If � is small or
large �corresponding to small and large radius
R�, F�����1−cos�2��−� sin�2���� at ��1 and F���
�−sin�2��sin�2��� /2�2 at ��1.

Equation �18� and, hence, Eq. �23� are valid in the ex-
treme case of 
→0. If R→0, the open book converts to the
hard angle and Eq. �23� should convert to Eq. �21� at �	
�1. This is not so. In fact, here we have a competition of
two small parameters � and 1 /�	. Taking into account sin-
gular contributions to the Fourier transform t̃�q� �the same as
in case of the hard angle� gives an additive contribution to
voltage
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− V0�� sin�2��
1

�	
�24�

exactly coinciding with the hard angle result �21� at �	�1.
For �-like wire the function F��� is replaced with

F��� =
2�2

�1 − �2�2�� cos2	��

2

 −

1 − �2

2
sin����� . �25�

Note that in this case contribution �24� does not appear be-
cause straight parts of the curve are parallel. In limiting cases
of large and small �, this function behaves as F����−��
−2��3 at ��1 and F����sin ��+ �1+cos ��� /� at ��1.

VI. DISCUSSION

The considered ballistic and kinetic regimes differ in the
participation of scattering in the voltage appearance. In the
ballistic regime electrons go through the wire conserving the
equilibrium states of the source and drain seas. In the kinetic
regime the scattering and equilibrium establishment occurs
inside the wire. This has no effect on the order of the voltage
magnitude mainly determined by the parameter V0 in both
cases. Qualitatively, eV0 is the mean kinetic energy which an
electron obtains from the alternating field. The estimations
give V0�10−6 V for E=1 V /cm, �=1011 s−1, and electron
mass of GaAs m=0.07�10−27 g.

The ballistic voltage experiences the time-of-flight oscil-
lations. They smear out by scattering. In a particular case of
hard angle this results in the disappearance of voltage in the
kinetic regime. Under very strong scattering the static field
becomes local as determined by the local curvature; hence,
the global voltage is determined by a global geometry of the
wire, namely, the total angle of rotation of the tangent. In the
case of moderate scattering the voltage contains two contri-
butions; one of which depends on the angle between straight
entrance and exit and the other depends on the local geom-
etry of the wire. The first of these contributions vanishes if
the angle is � �for example, in � curve�.

Note that in the kinetic regime the voltage goes to the
finite limit if the length tends to infinity. This limit, as a rule,
has the same order of magnitude as in the ballistic regime
but, unlike the latter, is determined by the energy dependence
of the relaxation. This difference is specified by the differ-

ence of relaxation: inside the wire in the kinetic case and
outside the wire in the ballistic case.

The effect considered here occupies its place in a rank of
other photoelectric effects including photon drag,4–6 photo-
galvanic effect,1–3 quantum pumps,7–10 etc. It is desirable to
compare them with each other. Unlike the photogalvanic ef-
fect which occurs in macroscopically uniform media, this
curvature-induced effect has a local character. When the sys-
tem size goes to infinity the produced voltage tends to the
fixed limit instead of growth.

Let there are multiple kinks on the wire distributed with
constant density. Then any kink will produce a fixed voltage,
so that they additively produce the mean electric field �and
the corresponding current in a short circuit regime�. This
variant reminds of the photocurrent in a spiral quantum
wire.15 Both effects have the same physical origin: the pho-
ton drag due to the curvature-induced effective momentum
of the wave. The found voltage is independent on the relax-
ation rate in the limit of weak relaxation �except for the case
of hard angle, where the absence of relaxation leads to the
absence of voltage�. At the same time the current in the spiral
grows in the limit of weak relaxation under resonant condi-
tions �when the velocity of wave coincides with the Fermi
velocity�. This difference between the effects results from the
fact that the kink produces a wave package instead of a
single wave in case of a spiral curve and averaging on mo-
mentums washes out the resonance and the dependence on
the collision rate.

The system under consideration is akin to quantum pumps
by locality of the alternating perturbation; but, unlike them,
the found �with relaxation taken into account� current disap-
pears in the infinite system. The asymmetry of considered
systems is artificial. From this viewpoint these systems are
similar to the artificial antidot lattices.13,18,19 Being planar,
the curved wires can be simply realized experimentally, in
particular, in the same antidot lattices under depleting condi-
tions. Hence, there is hope for a quick experimental verifi-
cation.
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